
;

:

Parallel Hybrid Iterative/Direct Solution
Methods

Robrl D. Ferraro

Jet Propulsion Laboratory

California Institute of Tuhnology

1. Introduction ,

In solving finite clcmcnt problems, the differential equation is ultimately reduced

to a set of linear equations which must be solved by some method. Various different

approaches can be used to solve this Iincar equation set. In some instances, an explicit

method is used to advance the differential equation in time and thus the solution of the

linear equation set is accomplished automatically in the process. III most cases,

however, a matrix of cocftlcicn~s must actually be formulated and some numerical

method employed to obtain onc or more solutions to thk equation set.

There arc generally two broad categories of methods for solving linear equations:

direct methods and iterative mclhods. Direct methods typically involve the

factorization of a matrix into some combination of upper and lower triangular matrixes

which may be casil y used in backsolving with the right hand side to obtain the

solulion. Once the factorization is accomplished, little additional effort is required to

solve problems which differ from the original only in the right hand side (which

usually rcprcscnts the boundary conditions or driving function). Direct methods,

depending on the sparsity of the linear systcm, involve operation counts which scale

approximatcl y as order nb2, where n is the number of degrees of freedom, and b is

the average bandwidth of the sparse matrix. Although various numbering techniques

may be used to minimize the bandwidlh of sparse matrixes, the fact that the problem

slcms from a finite clcmcnt formulation implies that general geometric considerations

will couple the bandwidth to the number of degrca of freedom and the. dimensionality

of the problcm, so that b is on the order of square root of n for two dimensional

problems, and the two-thirds power of n in ttuw dimensional problc.ms.

Iterative methods, on the other hand, typically involve sparse matrix-vector

multiplies and the construction of orthogonal vectors to decide on ncw search

directions at each iteration step. ‘l%c sparse matrix-vector multiply cm be computed

in order nf operations, where n is the number of dcgrccs of frcdom, and f is the

average number of non-zero cocfticicnts in each equation. For finite clcmcnt

formulations, f is a number which depends on the type and degree of finite clcmcnts

cmployui, and is indcpcndcnt of the size of the problcm. Obtaining a solution to the.

Iincar equations set involves rcpcatcd matrix-vector multiply operations until some

convcrgcncc criterion is satisfiul. ‘Ibis typicaI1y involves something lCSS than order n

operations, thus the iterative methods have somewhat of an advantage in tcms of

operation count compared to direct mc.thods when dealing with very large systems.

More importantly, in cucrcnt parallel supcrcomputing cnvironmcrrts, locality of

memory access is the most important consideration in the design of any method for

solving linears ystcms. In every parallel supcrcmmputer available, the programmer

must pay a price for accessing memory which is not local to a proecssor. Thc largest

scalable para]lcl computers today (such as the IBM SP-2, Intel Paragon, Cray T3D,

SGI POWER CHALLENGEarmy, and Convex Exemplar) have processors with local

memory intcrconncctcd through some fast network hierarchy. Though some

2

distributed memory systems, like the Cray T3D and Convex Exempla[SPP, allow the

user a shared memory programming model, efficiency considerations require the user

to manage the locality of data access, since rcfcrcncing data which is not in the

processor’s local memory is always a significant cost operation. Thus in designing

parallel algorithms. special attention must always be given to arranging data in

memory to minimiz~ the number of remote memory accesses across the

interconnection nclwork, or at Icasi orgmizcs them into biock references which can be

fctchcd cfficicn[ly. This usually leads to algorithms which cqwratc on tocalizcd blocks

of data rather than striding unifolmly or randomly through memory. Parallel

algorithms for direct and iterative methods have been published in many places in the

law fcw years, i.e. Fox, et, al. (1988, 1994), and Barrett, et. al. (1993). Parallel

computer manufacturers USUM y provide some type of parallel factori@ion and

parallel iterative method in library form which maybe employed in solving tinitc

clement problems. Although direct methods are typically more stable than iterative

methods, for large problem sizes, their operation counts and parallel scaling arc such

that they arc not feasible for usc in solving very large problems. As tens of millions of

finite elements become used in ckxxromagnetics problems, it will home imperative

10 apply an iterative method to obtain any solution whatsoever.

A wide variety of iterative methods have been employed to SOIVC finite clcmcnt

problems. The most popular among these are the Krylov subspace orthogonalization

methods upon which conjugate gradient and its variations are based. Explicit

orthogonal ization methods such as GMRES are also very popular and robust, but

require substantially higher operation counts to achieve convergence. This is due to

the fact that the latter method explicitly constructs orthogonal search directions bamt

3

on some number of previously saved iterations. This process becomes more cxpcnsivc

with every new iteration, and thus is typically carried only for a limited number of

steps before some restart algorithm is used. An cxccllcnt discussion of some of the

theory and all of the issues associated with iterative methods maybe found in Barrett,

et. al. (1993) and rcfcrcnces contained therein, and will not be repeated here.

In this chaplcr, a novel combination of direct and iterative methods will be

considered which can be employed succewfull y in solving finite element problems.

This combination, rcfcrrcxt to here as hybrid methods, originated from the observation

that a parallel decomposition of a finite clement mesh resulted in some, number of sub-

problcms which could be viewed as independent finite element problems and which

could be solved in parallel without communication. The bandwidth of each of time

problems was substantially smaller than the bandwidth of the total linear systcm and

thus direct mclhods could be cflcicrrtl y employed on these sub-problems when it was

not feasible to do soon the global problcm.

In parallclizing a finite elcrncnt mclhod, consideration must be given not only to

the parallel linear equations solution method, but also to the parallel assembly of the

coefficient matrix of the linear systcm, and the boundary conditions or excitation terms

which constitute the right hand side of the linear system. Since finite elements arc

geometric objects with geometric connectivity and spatial relationships, the sparsity

pattern of the coefficient matrix mimics the spatial pattern and connectivity of the

finite elements from which the matrix is constructed. The parallel partitioning of the

finite clcmcnt mesh maybe used directly to construct a decomposed sparse coefficient

matrix for use by iterative methods, since the matrix-vector multiplies can be done in

parallel without regard to the order in which the operations are carried out.

4

pcrform&llat all times in order to achieve the highest cfliciency, Thus besides data

decomposition, load balance is a critical consideration in any parallc.1 algorithm. For

conjugate gradient algorithms, the majority of work is in the matrix-vector product

and since that work is directly proportional to the number of nonzcro entries in the

matrix, a load balanced implementation corresponds to a uniform distribution of the

nonzcro matrix clcmcnts across processors. Attention should also be paid to the work

involved in computing the vcztor-vcztor inner products, bu~ this work is usually small

compared to the matrix-vector multiply.

The basic conjugate gradient algorithm for linear systems which r&ult in/

symmetric positive definite matrices is given in Fig, 1. This algorithm is intended to

SOIVC the linear systcm

Ax==b (1)

Hcm, and in Fig. 1, A is a symmetric positive definite matrix corresponding to the

cwfficicnts of the linear system and b is the right-hand side vector. In the conjugate

gradient algorithm of Fig. 1,x(i) is the solution at each itcra[ion step, rfi) is the residual

vector al each iteration step, and a and (3 arc scaling coe~lcicnts which are used to

dclcrminc the ncw conjugate search directions p(i) and q(i). his algcwithm involves

onc matrix-vector product, two vector inner products, and three vtxtor scale & add

operations (S AXPYS) in the inner loop. The thcmy behind conjugate gradient

algorithms can be found in many placcx, and will not be discussed here. Instead this

section focuses on the issues of designing an efficient parallel irnplcmcntation for

conjugate gradient algorithms anti their variations.

Parallelism in conjugate gradient algorithms essentially comes ft om parallelism

in the matrix-vector multiply, the inner products, and the SAXPYS. The remainder of

6

the operations involwxl in the conjugate gradient algorithm in Fig. 1 are trivial

compared to these. In the main loop of the algorithm the sequence of opcra[ions to be

performed is fixed by the algorilhm i~self. However, certain operations can procwd in

parallel since there arc no dcpendcncics. In particular, the update of the. residual vector

and the solution vector do not depend on each other, and could be pcx formed in

parallel. Neither of these parallel operations can proceed before the nlatrix-vector

product is complctcd and the scaling coefficient a is compumd from its result.

Likewise, the matrix-vector product of the next iteration may not proceed until the

residual vector has been updated. ‘I%us there are two points at which all processors

must synchronize before they may proceed further with the algorithm. It is important

that the work load remain balanced between synchronization points so that all

processors participate in all of the computation that needs to take place and that none

go idle during that period. Therefore the parallel implementation of the matrix-vector

product should be tailored to the details of the matrix itself so that it achieves its

maximum parallel cfticicncy and the work for the vector inner products and SAXPYS

be equally divided among processors. NoIc that this requirement does not necessarily

impose a rigid constraint on how the matrix and vectors arc decomposed in parallel.

Any decomposition which achieves these goals will allow a parallel conjugate

gradient algorithm to perform WCII.

In exact arithmetic, the conjugate gradient algorithm applied to a set of n linear

equations converges to the solution uniformly (in some norm) and in n iterations. The

residual error is generally reduced at each iteration so that the solution comes closer

and closer to the exact solution with each iteration step. Thus when only finite

precision is required of the answer,{~njugate gradient may arrive at a sufficiently

L

7

good solution much earlier than the n iterations required for exact convergence. This

means that in practice, conjugate gradient algorithms converge in less than order n2

operations. When problcm sizes arc large, conjugate gradient is very auractivc

compared to direct factorization methods. (lIc Reader is reminded that the uniform

convergence property of the conjugate gmdicnt algorithm is applicable only to

posilivc dctinitc symmetric linear systems. The variants of conjugate gradient for

other types of linear systems do not, in gcncrat, have such convergence properties.

However, the reduction of the residual error to some stopping criteria gcncrall y

produces a uniform error solution, so that less than order n2 operat.iol~ are the norm

for conjugate gradient and all of its variations.)

The basic conjugate gradient algorithm, however, is almost never used because

large linear syslcms often have poor condition numbers. Finite prwision arithmetic in

combination with poor conditioning causes convergence to be SICJW, or can prevent

convcrgcncc altogether. Methods have been developed to improve the conditioning of

the problem, and speed the rate at which the conjugate grad icnt iterations achicvc the

rcquirrd prwision. These methods, known as prcamditioncrs, essentially transform

the linear equation set into a ncw set of equations which are better suited to solution

by conjugate gradient methods. Written formally, a preconditioned M = MIM, takw

the linear system in cqn. (1) and tfiinsforms it by

(M; lAM;l) (Mrx) = (M;lb) (2)

into

A’x’ = b’ (3)

Writing M as the product of a left prcconditioncr Ml and a right prcconditioncr M,

8

allows the properties of cqn, (1) to be preserved in eqn, (3), provided that Ml, Mp and

thus M, arc appropriately chosen. For example, if A in cqn. (1) is symmetric and

positive definite, and Ml = M~, thcrr A’ will also be symmetric and positive definite.

An cffcctivc prcconditioncr essentially transforms the matrix into another matrix

which is closer to the identity than the original. The ideal preconditioned is in fact the

matrix inverse itsclfl However, the cost of computing the inverse is the cost of solving

the problcm in the first place. A detailed discussion of preconditioning is also beyond

the scope of this chapter. Preconditioning is an art rather than a science, and the made.r

is rcfcrrcd again to Barrett, et, aI, (1993) for a variety of mctlrods in common USC.

In Fig. 2, the conjugate gradient algorithm has been modified tn include the

application of a symmetric positive definite pre.conditioner, which is represented by

solving the linear syslcm M z = r. The prcconditioner is almost never applied directly

[o the matrix, bccausc that would destroy the sparsity characteristics of the matrix, and

thus the advantages of sparse vector matrix multiply. Rather, the algorithm is modified

to include a linear system solve at each iteration. The prcccmditioncr has presumably

been chosen so that the linear systcm solve can be accomplished quickly! However,

the application of a prcconditioner to a dwomposcd linear system on a parallel

processor proves to be a serious complication to the efficiency of parallel conjugalc

gradient. The linear equation SOIVC that rcprescnLs the application of the

preconditioncr can be as complicated to implement in parallel as any of the direct

factorintion methods thcmsc]vm or it may require a high setup cost to construct in the

first place. Urdcss the prwonditioner c}loscn has data decomposition characteristics

which match the matrix dccompositicm characteristics, the eftlciency of the conjugate

gradient multiply can be ruined by the incffrcicncy of applying the prceonditioner. A

9

1 :

inefficient prcccmditioncr, or onc which is expensive to construct in a parallel

environment can more than cancel the benefit of a rcduccxl iteration count that it wm

meant to provide. So particular care must be taken in choosing a prcxonditioncr in a

parallel implcmcrrtation.

The basic conjugate gradient algorithm discussed above is useful only for

positive-dctinite linear systems, but there area variety of extensions and variations of

this algorithm which can be applied to linear systems with other problems. Bi-

conjugate gradient, for example, cm be used for complex systems, quasi-minimum

residual (QMR) method, for complex symmetric systems, and conjugate gradient

squared, and bi-conjugate gmdicnt stabilizd for complex indefinite systems. Each of

these variations involves a different method of computing the search directions, but

the basic operations remain the same: matrix-vector products, vector inner products,

SAXPYS, and some preconditioning schcmc which is applied at each iteration step.

Thus parallel cftlcicncy for any of these methods will be achieved by cffrcicnt parallel

implementation of these core operations. Ignoring the prcconditioncr, the parallel

scaling for the conjugate gradient algorithm is the same as the scaling for parallel

matrix multiply. Very high effrcicncy can be achieved by crrrcful attention to

minimizing the communications involved in these operations.

‘JIc introduction of a prcconditioner can destroy this scaling property, Thus even

though the number of iterations to achieving the solution is substantially reduced by

the usc of a prcconditioncr, the total execution time may actually rises if the parallel

efficiency for the application of the precxmditioncr itself is poor. In some situations, it

is in fact better to usc a very simple prcconditioner like diagonal scaling (Jacobi

preconditioning) which has excellent pamllelization properties than it is to usc a

10

‘sophisticate prcconditioncr like incomplete Cholesky factorization, Even though the

iteration count is higher with diagonal scaling, the cxceution time to solution may be

as good as or better than the more .sophisticatcd method,

3. Hybrid direct-conjugate gradient algorithms

The implcmcntalion of finite element methods for parallel computcm provide an

opportunity to employ a unique method of combining direct and iterative linear

equation solvers which, when taken together, enjoy Iwtter parallel scaling and

convergence than either alone. The typical implementation of a tinitc clement method

uses a domain decomposition which splits the finite element mesh into compact

submcshcs so that each processor has @pproximatcly) an equat portion of the entire

problcm. From the individual prooxsor’s viewpoint, it h~$ a complete finite clcmcnt

problcm. Thus one can employ a direct method to SOIVC the finite element subproblcm

without regard to the meshes which arc Ming processed on other processors. Consider

the exampl~ two-dimcnsionrd tinitc element mesh shown in Fig. 3. In this example, the

mesh has been partitioned among four prcwcssors, such that elements in the mesh

reside in onc and only onc processor. The boundaries bctwcxm partitions lie along

clcmcnt edges or faces, so that nodal points (and degrees of freedom corresponding to

those points) serve as a dividing line between processors. Taken individually, each

processor has a partition which is a tlnitc clcmcnt problcm unto itself with boundary

conditions that arc dcpcndcnt on the results obtained in other processors. In Fig. 3 the

nodal points interior to a partition arc represented by filled circles and nodal points

lying on partition boundaries arc denoted by open circles. Were it not for tlw fact that

the values on the partition boundaries are coupled to results in neighboring processors,

a standard sequential finite elements method could be used without nmdification to

11

SOIVC the interior problcm.

The clcmcnts in this simple example belong uniquely to a single parthion. In a

standard sequential finite clcmcnt formulation, each element contributes additively to

the global sf~$ness matrix K andforce vector f [see Hughes (1987), c..g.] as follows:

K = ~K(c) (4a)
c

f =: ‘y) (4b)
e

Here K(e) and #e) arc the contributions of a single element to the global stiffness

matrix and global force vector rcspcetivc]y, and the. summation is ovc.r all e]cmcnt$ in

the mesh. In a partitioned mesh such as shown in Fig. 3, the contributions of all the

elements may be computed in an embarrassingly parallel fashion (i .c., without

intcrprocessor communication), since each partition is assigned to its own procmsor,

The stiffness matrix K ‘p) which corresponds to a partition contribution is computed

on its processor using cqn. (4a) fc)r the elements contained in the partition, and the

global stiffness matrix may be recovered (if ncw$sary) by summing over proccssorsp:

K = ~K (P) (5)

P

The force vc.cxor f is computed similarly using cqn. (4b) on each ploccssor, but the.

results must be summed across all processors p so that the values al the shared nodes

corrcclly include contributions from elements in different partitions,

For iterative methods which require only matrix-vector products and inner

products, it is not ncces.sary to rccovcr the global stiffness matrix. These methods only

require the result of the matrix-vector product, which can be computed in parallel

12

dircclly from the individual partition stiffness matrices K‘)

(6)
P

Ifcrc X ‘p) is the portion of a global vector which corresponds to the unknowns in

partition p. The vector X ‘p) will contain entries for shared ncdcs on partition

boundaries which arc duplica[cd in more than onc processor. In partition A in Fig, 4,

for example, X ‘A) would consist of the unknowns associated with the interior nodes

of ~hc partition and the shared nodes labeled ZJ, b, and t.?, but no others. The matrix-

vulor multiply of cqn. (6) will automatically prochrcc (hc correct results in parallel for

interior nodes. The summation of cqn. (6) must be performed only for the shared

nodes, i.e., the shared nodes have contributions from elements in Inultiplc partitions

which must be summed together to obtain the correct result.

This observation leads to the possibility of using standard sequential direct

factoriWion methods to remove the degrees of freedom interior to the partitions

entirely fmm the problcm, leaving only the shared nodal points on partition

boundaries to bc solved in parallel. This idea can be rcprescntcd formally by writing

out the linear equation set which corresponds to the finite clcmcnt I ~roblcm in the

following manner, First, the dcgrccs of frtxdom attached to partition interior nodal

points arc numbered in order by partition, followed by the degrees of freedom which

arc attachul to the partition boundary nodes. For edge clement problems, degrees c~f

freedom arc associated with edges instead of nodes, but the same numbering

methodology applies. The global matrix which con-csponds to the partitioned finite

clcmcnt problcm can now be seen to consist of a set of matrix blocks which correspond

to the coupling of interior points of each partition, tic coupling terms between the

13

interior poinLs and the boundary points in each partition, and finally the entries

corresponding to coupling among the boundary points themselves m represented

pictorially in Fig. 4 for the partitioned mesh shown in Fig. 3. Returning to the usual

linear algebra notation of cqn. (l), this linear system can be written as

where Aii arc the blocks which result from pairs of interior nodes, Ai~ arc the blocks

which result from interior node/shared node pairs, and A,$ is the block which results

from pairs of shared nodes. Note tha[the large blocks of partition interior nodes in this

matrix arc coupled to each other only through shared nodes and thus maybe formal] y

removed from the problcm by simple algebra, The upper equation in qn. (7) maybe

solved for xi to obtain

Xi = A~* (bi – Ai,x~)

IIcrc it is understood that A:] is a shorthand notation for a factorization of Aii.

Introducing this expression for xi into the lower equation of eqn. (7) rcsulLs in a

reduced Iilicar equation set consisting only of shared partition boundary poinls:

Arx, = b,

where

(8)

(9)

(lo)

(ha)

14

br = (b, – A,iA~lbi) (llb)

The fmccss of eliminating the interior points coupkx every shared point on every

partitioned boundary with every olhcr shared point.

It is a conscqucncc of cqn. (5), which is a property of the finite clcmcnt method,

that eqn. (1 la) partitions completely and indcpendcndy among processors. Each of the

matrix blocks in eqn. (1 la) “lu~’I out to be thcmsclvcs parthioned arnolig processors so

that

A(p) (A:)) -’Ai~))A(p) = (/$) – ,i
r

and

(12)

(13)
P

Each of these reduced matrices A,@) arc dense matrices. It should bc noted that

eqn. (8) may also bc computed independently in each partition for that partition’s

interior nodes, and thus may be done in parallel without communication, The reduced

matrices could be recombined across all processors, and redistributed for a parallel

factorization step, but the. decomposition method allows these matrices to be used

directly by an iterative schcmc, e.g., a conjugate gmdicnt method, to complete the

solution of eqn. (10) for the shared nodes. Note that the solution obtained for the

reduced equations is exactly the desired values for the dcgrcm of fredom on the

shared nodes. To obtain the solution values on the interior nodes is a simple matter of

applying eqn. (8) to the solution for the shared nodes. The factorization aflow for

forward and back substitution in parallel on each processor without communication.

Additionally, for simple changes in global boun&uy conditions, the factoriz.ations of

15

the interior node matrix blocks may be retained so that multiple right-hand sides may

bc done successively in an cfticicnt manner.

This method produces reduced malriees whose characteristics are the same as

those of the global matrix from which it was derived, i.e., if the global matrix is

symmetric, the reduced matrix is also symmctri~ if the global matlix is Hcrmitian,

then the rcduccd matrix is Hcrmitian, Thus, any of the standard iterative methods can

be used to solve the reduced equation set since the matrix vector multiplies arc the

fundamental operations and each conjugate gradient method differs only in how the

results arc combined to form ncw scav.% directions. Addi tionally, for poorly

conditioned problems, the application of a direct factorization method with pivoling

can improve the conditioning of the system and allow the conjugate gradient algorithm

to converge on the reduced equations when it would not have convc~ged on the global

systcm.

In constructing the soflware m implement this method, the essential

considerations arc the numbering of the unknowns locally within each processor, so

that the matrix structure naturally falls into the form shown in Fig. 4. The algorithm

for this hybrid method is presented in Fig. 5. The segregation into the interior and

shared node blocks rdlows sequential algorithms for the computation of A;l

(factorization) to be applied unchanged, Many are available, see for example, Press,

e~ a!. The application of cqn. (12) maybe done using standard library routines like the

BLAS of Lawson, ct. al. (1 979) or, if special storage methods are used, can be written

simply as matrix vector multiplies. The final reduced matrix, which is essentially

dense, may be used with a BLAS SEGMV routine which is typically available on all

parallel platforms, and optimized for its architecture. Thus the only communications

16

required is a global summation of vectors at the end of each call to SEGMV.

Since the itera~ivc part of this method is applied only to the unknowns which

reside on partition boundaries, this method has scaling properties which arc better than

an iterative method applied to the original problcm. The operation count for conjugate

gradient on the global finite element problcm scales as order n2 where n is the number

of dcgrccs of frdom. In this mcthcd, the number of unknowns on the partition

2~ for 3-I> problems, so that the1~ for two-D problems or nboundary goes as n

iterative portion of the solver converges in either order n operations in 2-D or order

n4D in 3-D. The remainder of the operations involved in the method scale as the

number of interior points. As problcm size grows with the number of processors, this

work load is a constanl independent of problem size. Thus if wc compare the

implementation of a conjugate gradient method with diagonal preconditioning to this

hybrid method, we see that the hybrid method outperforms the conjugate gradient

method after only a small number of processors.

In Fig. 6 the scaling behavior of each of these methods is plotted versus number

of processors for a series of scaled problems with 1600 grid points per processor. That

is to say, a base problcrn consisting of 1600 unknowns was solved on a single

processor, and scaled problems consisting of 1600p unknowns were solved for p = 2,

4,8, 16, .,.The data shown is the ratio of execution time for solution of each of these

problems normalized tothc exrmrtion time for the 1600 grid problem on a single

proecssor. The bi-conjugate gradient method scales as p whcrep is the number of

processors while the hybrid method applied to the same problems scales

approximatcl y as the square root of p. It is clear from the graph that for Iargc problem

sizes on Iargc numbers of processors, the hybrid mc.thod is the clear winner.

17

Although the results prcscntcd here are for a Cholcsk y factoriixition of the interior

degrees of freedom followed by a conjugate gradient solution of the shared dcgrccs of

freedom, it is expected that this scaling behavior will carry over to any appropriate

combination of direct and iterative method. The direct method is a constant cost, while

the iterative method operates on a problem size which is reduced f] om the original by

the surface to volume ratio (since the shared nodes arc the surfaces of a partitioned

volume). Although this method is most easily understood in terms of and applied to

parallel tinitc clcmcnt problems, it relics only on the assumption that the linear

equations set being solved rcprcscnt.s some local coupling among unknowns (Iikc that

typically arising from the solution of partial differential equations via finite diffcrcncc,

finite clcmcnt, or finite volume methods) and that a gmmctric compact partitioning of

the unknowns is possible.

4. Acknowledgments

Many people have contributed to the dcvclopmcnt of this idea (over several years

and projects) into a working software package. In particular, the author wishes to

acknowledge G.A. Lyzenga as t.hc originator of the idea a number of years ago at the

Jet Propulsion Laboratory, and thanks ILDing for his cxmtributiom$ in extending the

software to tinitc diffcrcnee problcrns and in measuring the methods sealing

properties.

This work was performed at the Jet Propulsion Laboratory, California Institute of

Technology under a contract with the National Aeronautics and Space Administration.

Rcfcrcncc hcrvin to any specific commercial product process, or scrvicc by trade

name, trademark, manufacturer, or othmvise, does not constitute cir imply its

endorsement by the United States Gcwcmmcnt or the Jet Propulsicm Laboratory,

18

California Institute of Technology.

This research was performed in part using the Intel Touchstone Delta and Paragon

Systems operated by Caltech on behalf of the Concurrent Supcrcornputing

Consortium. Access 10 this facility was provided by thcJet Propulsion Laboratory, and

NASA Ofticc of Aeronautics.

5. Bibliography

Barrett, R., Berry, M., Chan, T., Dcmmel, J., Donato, J., Dongana, J., Eijkhout,

V., Pozo, R., Romine, C., and van dcr Vorst, H. (1993). Temp/a(esfo/ Me Solution of

Linear Systems: Building Blocks for Iterative Methods. Philidelphia:SIAM, iv+92 pp.

R.Cook, and J. Sadccki, Sparse Matrix Vector Product on Distributed Memory

M[MD architectures, in Proccdings of 6th SIAM Conference on Parallel Processing

for Scientific Computing, 1993, p.429.

H.Q. Ding and R.D. Ferraro, Slices: A Scalable Prrrtitioncr for Finite Element

Mcshc$, in Procccdings of 7th SIAM Conference on Parallel Processing for Scientific

Computing, 1995.

1.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methodsfor Sparse Matrices,

Oxford University Press, London, 1986.

R.D.Fcfiam, T.Cwik, NJacobi, P.C.L,iewcr, T.G.Lockharti G.A.1 .yzenga,

J.Parker, and J.E.Patterson, Parallel Fini(e Elemen(s Applied 10 the l:lectrornagnetic

Sca~(ering Problem in Procdings of the 51h Distributed Memory Computing

Conference, Edited by D.W.Walker and Q.F.Stout, IEEE Computer Society press, I.os

Alamitos, CA. (1990) p.417.

19

G.C. Fox, M.A. Johnson, G.A. Lyzerrga, S.W. Otlo, J.K. Salmon and D,W.

Walker, Solving Problems on Concurrent Processors, Vol. 1, Prentice } Ian, Englcwood

Cliffs, Ncw Jersey, 1988. Chap.7.

Fox, G.C, Wdliams, R, D., and Messina, P.C. (1994). Parallel Computing Works!

Morgan Kaufmann Publishers, Inc., San Francisco

M, T. Heath, and R Raghavan, Pe~formance of a Fully Parallel Sparse So!ver, in

Proceedings of Scafable High Performance Computing Conference 1994, p.334, IEEE

Computer Soeicty Press, Los Alamitos, CA.

Hughes, T, J. R. (1987). The Finite Elemen(Method. Prentice-liall, Inc.,

Englcwood Cliffs, Ncw Jersey.

Jacobs, D.A.H. (181) ‘The exploitation of Sparsity of Iterative Methods’. In:

Sparse Matrices and their Uses, (1.S.Duff, editor). London: Aeadcmic Press

V. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction to Parallel

Computing, Benjamin/Cummirlgs, Redwood City, CA, 1994. Chap.11.

Lawson, C., Hanson, R., Kincaid, D., andKroch,F.(1979). Basic f.inearAlgebra

Subprograms for FORTRAN usage, ACM Trans. Math. Soft., 5, pp. 308-325.

G.A. Lyzcnga, A. Racfsky and B. Nour-Omid, Implemen(Finite Elernen[

Sojlware on (he }lypercube, Procc@ngs of 3rd Hypercube Conference, ACM Press,

Ncw York (1988), p.1755.

Press, W. H., Flanncry, B.P., Teukolsky, S. A,, and Vcltcrling, W.T. (1986),

Numerical Recipes. Ncw York: Cambridge Univcrsit y Press. pp. 31-37

20

P
(0) = ~(o) = b_ Ax(0)

PO = r(o) “ r(())
while II r (’) II not converged

q
(i)

= Ap(i)

Pl_l
~i =

‘—-~(t)
. q(i)

Jt) = X(I-l) +a,p(i)
r(t) = r(i-l)

- Ctip(i)

p, ,= r(o . r(i)

j-$,= _!3-
P~_l

~(l) = ~(1)
+ pip

(i - l)

end while

Figure 1. The conjugate gradient algorithm for symmc[ric, positive dctinitc Iincar

Syslm s ,

21

,

~(o) = &Ax(0)

solve Mz (0) =, ~ (0)

Po = r(o) “ ~(o)

P
(o) = z(o)

while !{ r(’) 1! not converged
#

= Ap(l)

PI-1
% = -II)

P “ q(i)
~(i) = ~(i-l)

+ ct,p(i)

~(i) = ~(i-l)
-a,p(’)

solve Mz(i) = r(i)

~, = ~(o . JO

PI
f$ = pi_l— .—

P (i) == # + pip (i-l)

end while

Figure 2. The preconditioned conjugate gradient algorithm for symmetric,

positive definite linear systems.

22

c

● Interior Node
O Shared Node

.

Figure 3. A simple finite element mesh partitioned among four processors

Elements are uniquely assigned to partitions A, B, C, and D. Nodes on partition

boundaries a, b, C, d, and the center node e are assigned to muItiplc partitions.

23

c D

Figure 4. The structure of matrix of cocfficicn~ of tie Mar syskm which results

from the finite clcmcnt problcrn of Fig, 3. Unshaded areas arc ZCKI values.

24

For each partition in parallel:

Factor A/[)

(A(p) -A(p) (A$))-l A$))Compute A$) z ~~ ~i

(P) =Compute br
A (p) (A$’))-lb~)si

Compute and distribute b, = b, – ~t),b)
P

Sofve (~A~)) X, = b, using a parallel iteratiw solver

For eac;partition in parallel:

Compute x~) = (A::))-1 (by) - A~) X,)

.. ——— —— —— -

Figure 5. The parallel hybrid algorithm. The factor and iterative solve steps must

bc tailored to match the propcrt.ks of the underlying linear system. For symmetric

systems, some additional algebraic recombiniations are possible.

25

40

30

20

10

0
0 20 40 60 00 100 120 140

Nurmber of Processors

Figure 6. Scaling characteristics of the hybrid method compared to a diagonally

preconditioned conjugate gradient method for the same problems.

